Appendix – Q1 - Hamiltonian-Langrangian Formulations of the 7dU

By

Jed Kircher and GPT40

May 1 - 2025

Section 1: Constructing the Lagrangian from the 7dU Metric

1.1 The 7D Metric Structure

We begin with the 7D metric g_{AB} where A, B = 0, 1, 2, 3, 4, 5, 6 and the signature is chosen as:

$$g_{AB} = \begin{pmatrix} -c^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \zeta^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \omega^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \xi^2(t) \end{pmatrix}$$

This diagonal structure reflects the extended curvature space where:

- ζ enforces a minimal bound (collapse constraint)
- ω enforces a maximal divergence (expansion constraint)
- $\xi(t) \sim \mathcal{N}(0, \sigma^2)$ introduces structured stochasticity (chance dimension)

1.2 General Form of the Action

We write the extended Einstein-Hilbert action for 7dU:

$$S = \frac{1}{2\kappa_7} \int d^7 x \sqrt{-g^{(7)}} R^{(7)} + S_{\text{matter}}$$

However, for the Hamiltonian-Lagrangian formulation, we consider a particle or geodesic action in this curved 7D spacetime:

$$S = \int \mathscr{L} d\lambda = \int \frac{1}{2} g_{AB} \frac{dx^A}{d\lambda} \frac{dx^B}{d\lambda} d\lambda$$

Let $x^A = (t, x^i, \zeta, \omega, \xi)$ and λ be an affine parameter (e.g., proper time for massive particles). Then:

$$\mathscr{L} = \frac{1}{2} \left[-c^2 \dot{t}^2 + \delta_{ij} \dot{x}^i \dot{x}^j + \zeta^2 \dot{\zeta}^2 + \omega^2 \dot{\omega}^2 + \xi^2 (t) \dot{\xi}^2 \right]$$

where $\dot{x} = \frac{dx}{d\lambda}$.

This is the kinetic Lagrangian for a test particle in 7dU.

1.3 Notes on ξ as a Stochastic Contribution

We now distinguish ξ from deterministic coordinates:

• ξ is itself time-dependent, modeled as:

 $\xi(t) = \xi_0 e^{-\alpha t} + W(t)$ with W(t) a Wiener process

- Thus $\xi^2(t)\dot{\xi}^2$ is not a classical term, but contains:
- Fluctuating time dependence
- Implicit stochastic calculus rules, e.g., Ito or Stratonovich

We may write this term as a stochastic Lagrangian contribution:

$$\mathscr{L}_{\xi} = \frac{1}{2} \xi^2(t) \dot{\xi}^2 \quad \text{with} \quad \xi(t) \sim \mathcal{N}(0, \sigma^2)$$

Alternatively, treat it via expectation value:

$$\langle \mathscr{L}_{\xi} \rangle = \frac{1}{2} \langle \xi^2(t) \rangle \dot{\xi}^2 = \frac{1}{2} \sigma^2 \dot{\xi}^2$$

This allows a semi-classical treatment where ξ is a time-varying stochastic field, but its contribution to curvature is ensemble-averaged.

1.4 Summary of the 7dU Lagrangian

$$\mathscr{L} = \frac{1}{2} \left(-c^2 \dot{t}^2 + \dot{\vec{x}}^2 + \zeta^2 \dot{\zeta}^2 + \omega^2 \dot{\omega}^2 + \xi^2(t) \dot{\xi}^2 \right)$$

This will now serve as the foundation for:

- Deriving canonical momenta via $p_q = \frac{\partial \mathscr{L}}{\partial \dot{q}}$
- Applying the Legendre transform to obtain ${\mathcal H}$
- Exploring how ξ 's stochasticity alters phase space dynamics

Section 2: Canonical Momenta & Hamiltonian Construction

2.1 Define Generalized Coordinates

From the 7D Lagrangian:

$$\mathscr{L} = \frac{1}{2} \left(-c^2 \dot{t}^2 + \dot{x}^2 + \dot{y}^2 + \dot{z}^2 + \zeta^2 \dot{\zeta}^2 + \omega^2 \dot{\omega}^2 + \xi^2(t) \dot{\xi}^2 \right)$$

We identify generalized coordinates:

$$q^{i} = \{t, x, y, z, \zeta, \omega, \xi\}$$

and their velocities:

 $\dot{q}^i = \{\dot{t}, \dot{x}, \dot{y}, \dot{z}, \dot{\zeta}, \dot{\omega}, \dot{\xi}\}$

2.2 Canonical Momenta

Define momenta via:

$$p_i = \frac{\partial \mathscr{L}}{\partial \dot{q}^i}$$

Explicitly:

• Time:

$$p_t = \frac{\partial \mathscr{L}}{\partial \dot{t}} = -c^2 \dot{t}$$

• Spatial:

$$p_x = \dot{x}, \quad p_y = \dot{y}, \quad p_z = \dot{z}$$

• Emergence (ω):

$$p_{\omega} = \omega^2 \dot{\omega}$$

• Collapse (ζ) :

$$p_{\zeta} = \zeta^2 \dot{\zeta}$$

• Chance (ξ):

$$p_{\xi} = \xi^2(t)\dot{\xi}$$

!!! - Note on p_{ξ} :

This is stochastic:

Since $\xi(t) \sim \mathcal{N}(0,\sigma^2)$, this momentum evolves under a stochastic differential equation, not a classical one. We'll handle this semi-classically in the Hamiltonian.

2.3 Legendre Transform \rightarrow Hamiltonian

We construct the Hamiltonian:

$$\mathcal{H} = \sum_{i} \dot{q}^{i} p_{i} - \mathcal{L}$$

Substitute each:

$$\dot{t} = -\frac{p_t}{c^2}$$

$$\dot{x} = p_x, etc.$$

$$\dot{\omega} = \frac{p_\omega}{\omega^2}$$

$$\dot{\zeta} = \frac{p_\zeta}{\zeta^2}$$

$$\dot{\xi} = \frac{p_{\xi}}{\xi^2(t)}$$

So:

$$\mathscr{H} = p_t \left(-\frac{p_t}{c^2} \right) + p_x^2 + p_y^2 + p_z^2 + \frac{p_{\zeta}^2}{\zeta^2} + \frac{p_{\omega}^2}{\omega^2} + \frac{p_{\xi}^2}{\xi^2(t)} - \mathscr{L}$$

Simplify:

$$\mathcal{H} = -\frac{p_t^2}{c^2} + p_x^2 + p_y^2 + p_z^2 + \frac{p_\zeta^2}{\zeta^2} + \frac{p_\omega^2}{\omega^2} + \frac{p_\xi^2}{\xi^2(t)} - \mathcal{L}$$

But since:

$$\mathscr{L} = \frac{1}{2} \left(-c^2 \dot{t}^2 + \dot{x}^2 + \cdots \right) = \frac{1}{2} \left(-\frac{p_t^2}{c^2} + p_x^2 + \cdots \right)$$

We get the final Hamiltonian:

$$\mathscr{H} = \frac{1}{2} \left(-\frac{p_t^2}{c^2} + p_x^2 + p_y^2 + p_z^2 + \frac{p_{\zeta}^2}{\zeta^2} + \frac{p_{\omega}^2}{\omega^2} + \frac{p_{\xi}^2}{\xi^2(t)} \right)$$

This is the 7D Hamiltonian governing the dynamics of motion through the emergent probabilistic geometry of 7dU.

2.4 Interpretation

- Classical sectors (x, y, z) behave normally.
- ζ and ω define curvature-rescaled motion—their momenta are modulated by field magnitude.
- ξ introduces stochastic deformation of phase space, potentially breaking Liouville's theorem unless handled via ensemble averaging.
- Time is treated as a coordinate—not a parameter—allowing later Wheeler–DeWitt quantization.

Section 3: Recovery of Classical Limits & Symmetries

3.1 Classical General Relativity Recovery ($\zeta, \omega, \xi \rightarrow 0$)

To recover General Relativity, we collapse the 7dU Hamiltonian by constraining the non-spatial dimensions:

$$\zeta \to 0, \quad \omega \to 0, \quad \xi(t) \to 0$$

This yields:

- $p_{\zeta}, p_{\omega}, p_{\xi} \to 0$ (or vanish due to infinite mass term in denominator)
- Motion becomes restricted to 4D spacetime (t, x, y, z)

• The Hamiltonian reduces to:

$$\mathcal{H}_{GR} = \frac{1}{2} \left(-\frac{p_t^2}{c^2} + p_x^2 + p_y^2 + p_z^2 \right)$$

This is exactly the Hamiltonian for a free relativistic particle in flat Minkowski space:

$$\mathscr{H} = \frac{1}{2} \eta^{\mu\nu} p_{\mu} p_{\nu}$$
 with $\eta^{\mu\nu} = \text{diag}(-1/c^2, 1, 1, 1)$

So: GR is recovered in the limit of collapsed dimensional constraints.

3.2 Quantum Mechanical Recovery via Commutation & Poisson Limits We now examine Poisson brackets and check whether quantization is consistent. Canonical structure:

$$\{q^i,p_j\}=\delta^i_j$$

This still holds for the 7D phase space:

$$q^{i} = \{t, x, y, z, \zeta, \omega, \xi\}$$

When promoted to operators:

$$[\hat{q}^i, \hat{p}_j] = i\hbar\delta^i_j$$

This defines the canonical quantization of the extended geometry.

3.3 ξ as Stochastic Deformation of Phase Space

In the limit $\xi(t) \rightarrow \sigma \approx \text{const}$ (small noise or frozen fluctuation):

$$\frac{p_{\xi}^2}{\xi^2(t)} \to \frac{p_{\xi}^2}{\sigma^2}$$

So the Hamiltonian becomes regular again. But when $\xi(t)$ is dynamic:

- The Hamiltonian becomes time-dependent
- The system behaves like a driven oscillator or non-Hermitian quantum system
- Liouville's theorem may deform (phase-space volume is not conserved under stochastic flow)

This gives rise to testable deviations from Schrödinger evolution, making it a falsifiable quantum gravity candidate.

Sector	7dU Treatment	Classical Limit Outcome
t, x, y, z	Canonical spacetime coordinates	Minkowski metric recovered
ζ	Collapse constraint	Sets minimal curvature bound ($\rightarrow 0 = GR$)
ω	Emergence/scaling constraint	Upper divergence limit removed ($\rightarrow 0 = GR$)
ξ	Stochastic/probabilistic fluctuation	Vanishes → classical determinism restored
Phase space	Modified by $\xi(t)$	Canonical brackets preserved

3.4 Summary of Symmetry Recovery

We have now shown:

- The Hamiltonian reduces cleanly to classical GR in collapse
- Commutation relations and quantization still hold under controlled ξ
- Time-dependent ξ introduces falsifiable quantum behavior

Section 4: Quantization Pathways — Toward a 7dU Wheeler– DeWitt Equation

4.1 Canonical Quantization in 7dU

We promote canonical variables to operators:

$$q^i \to \hat{q}^i, \quad p_i \to \hat{p}_i = -i\hbar \frac{\partial}{\partial q^i}$$

Our Hamiltonian becomes a differential operator:

$$\hat{\mathscr{H}} = -\frac{\hbar^2}{2} \left(-\frac{1}{c^2} \frac{\partial^2}{\partial t^2} + \nabla^2 + \frac{1}{\zeta^2} \frac{\partial^2}{\partial \zeta^2} + \frac{1}{\omega^2} \frac{\partial^2}{\partial \omega^2} + \frac{1}{\xi^2(t)} \frac{\partial^2}{\partial \xi^2} \right)$$

4.2 The 7dU Wavefunctional: $\Psi(t, x, y, z, \zeta, \omega, \xi)$

We now postulate a wavefunction over probabilistic curvature space:

$$\hat{\mathscr{H}}\Psi=0$$

This is the Wheeler–DeWitt-type constraint:

- No external time parameter
- Time appears only within the configuration space
- Fits naturally into a geometrodynamic view, not a Schrödinger one

This matches the spirit of:

$\hat{H}\Psi[g_{ij}]=0$

in quantum gravity, where the wavefunction is defined over geometries, not particles.

4.3 ξ as Time Parameter or Decoherence Driver?

This shows us:

 $\xi(t)$ —previously a stochastic dimension—now shows up in the kinetic operator as:

$$\frac{1}{\xi^2(t)} \frac{\partial^2 \Psi}{\partial \xi^2}$$

This suggests two interpretations:

Option A: ξ as Internal Time

• If $\xi(t)$ evolves monotonically, we can use ξ as a clock:

$$\frac{\partial \Psi}{\partial \xi}$$
 ~ evolution

• This matches emergent time in decoherence or entropic dynamics models (Rovelli, Page-Wootters).

Option B: ξ as Entropy Flux

- ξ contributes non-Hermitian flow: time evolution becomes probabilistic
- The wavefunction may diffuse, not just propagate—suggesting entropy, measurement, collapse, or irreversibility.

Either way:

Time is no longer external—it is emergent, either through ξ or via fluctuation-constrained geometry.

4.4 Summary: 7dU Wheeler–DeWitt Proposal

We propose a quantum gravity framework where:

• The 7D Hamiltonian becomes a differential constraint on wavefunction over curvature space

- ξ governs quantum uncertainty, time emergence, or entropy flow
- ζ and ω impose geometry-stabilizing boundaries—cutoffs for fluctuation and divergence
- The resulting equation is:

$$\hat{\mathscr{H}}\Psi=0$$

with

$$\Psi=\Psi(t,x,y,z,\zeta,\omega,\xi)$$

Section 5: Simulation Targets & Hamilton–Jacobi Structure

5.1 The Hamilton–Jacobi Equation in 7dU

We now express system evolution not as trajectories in time—but as motion across action surfaces in configuration space.

The classical Hamilton–Jacobi equation is:

$$\frac{\partial S}{\partial \lambda} + \mathcal{H}\left(q^i, \frac{\partial S}{\partial q^i}\right) = 0$$

- $S(q^i, \lambda)$ is the action as a function of configuration variables and affine parameter λ .
- In 7dU, $q^i = \{t, x, y, z, \zeta, \omega, \xi\}$
- Time is not special: we evolve over entropy-weighted geometry

Applying to Our Hamiltonian:

Recall:

$$\mathscr{H} = \frac{1}{2} \left(-\frac{p_t^2}{c^2} + p_x^2 + p_y^2 + p_z^2 + \frac{p_{\zeta}^2}{\zeta^2} + \frac{p_{\omega}^2}{\omega^2} + \frac{p_{\xi}^2}{\xi^2(t)} \right)$$

Substitute $p_i = \frac{\partial S}{\partial q^i}$, we get:

$$\frac{\partial S}{\partial \lambda} + \frac{1}{2} \left(-\frac{1}{c^2} \left(\frac{\partial S}{\partial t} \right)^2 + \left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} \right)^2 + \left(\frac{\partial S}{\partial z} \right)^2 + \frac{1}{\zeta^2} \left(\frac{\partial S}{\partial \zeta} \right)^2 + \frac{1}{\omega^2} \left(\frac{\partial S}{\partial \omega} \right)^2 + \frac{1}{\zeta^2(t)} \left(\frac{\partial S}{\partial \xi} \right)^2 \right) = 0$$

This is the Hamilton–Jacobi surface equation in 7dU.

5.2 Interpretation for Simulation

This form of the equation enables:

- Symbolic solutions to be found along specific dimensional slices (e.g. freezing ω or ζ)
- Numerical evolution of action surfaces S, even if time is not globally defined
- Emergence of causal order from local entropy flow

In practice, we can:

- Simulate action surfaces over (ζ, ξ) with boundary conditions to test fluctuation thresholds
- Identify collapse-resilient pathways—i.e., trajectories that preserve structure
- Use gradient flow of S to recover generalized trajectories:

$$\dot{q}^{i} = \frac{\partial \mathcal{H}}{\partial p_{i}} = \frac{\partial \mathcal{H}}{\partial \left(\frac{\partial S}{\partial q^{i}}\right)}$$

5.3 Simulation MVPs and Experimental Targets

Colab-ready MVPs could simulate:

- Fluctuation collapse thresholds: find critical ξ where structure fails or stabilizes
- Action field evolution across $\zeta \xi$ or $\omega \xi$ space
- Comparative path entropy for multiple emergence routes

Experimental parallels could be drawn to:

- Modified Casimir vacuum behavior (sensitive to ξ - ζ scaling)
- Quantum tunneling asymmetries in curved backgrounds
- ξ -induced phase decoherence in interferometers

5.4 Final Notes

This structure prepares us to:

- Build symbolic and numerical simulators
- Seed entropy-aware AGI exploration in QEPE environments
- Quantitatively bridge collapse geometry to emergence logic

The 7dU becomes simulative—not just theoretical.