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Section 1: Constructing the Lagrangian from the 7dU Metric

1.1 The 7D Metric Structure

We begin with the 7D metric g,z where A, B = 0,1,2,3,4,5,6 and the signature is
chosen as:
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This diagonal structure reflects the extended curvature space where:
. ¢ enforces a minimal bound (collapse constraint)

. @ enforces a maximal divergence (expansion constraint)

. &(t) ~ N (0,6°) introduces structured stochasticity
(chance dimension)

1.2 General Form of the Action

We write the extended Einstein-Hilbert action for 7dU:
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However, for the Hamiltonian-Lagrangian formulation, we consider a particle or
geodesic action in this curved 7D spacetime:
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Let x4 = (t,x i, {, @, £) and A be an affine parameter (e.g., proper time for massive
particles). Then:
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This is the kinetic Lagrangian for a test particle in 7dU.
1.3 Notes on & as a Stochastic Contribution
We now distinguish £ from deterministic coordinates:

. ¢ is itself time-dependent, modeled as:

E(t) = Eye™ + W(r) with W(¢) a Wiener process

. Thus E2(£)E? is not a classical term, but contains:
. Fluctuating time dependence
. Implicit stochastic calculus rules, e.g., Ito or Stratonovich

We may write this term as a stochastic Lagrangian contribution:
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Alternatively, treat it via expectation value:
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This allows a semi-classical treatment where £ is a time-varying stochastic field, but its
contribution to curvature is ensemble-averaged.



1.4 Summary of the 7dU Lagrangian
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This will now serve as the foundation for:
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. Deriving canonical momenta via Py =

. Applying the Legendre transform to obtain #

. Exploring how &’s stochasticity alters phase space dynamics
Section 2: Canonical Momenta & Hamiltonian Construction

2.1 Define Generalized Coordinates

From the 7D Lagrangian:
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We identify generalized coordinates:

ql — {t’x’y’z’ C’ w’é}
and their velocities:
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2.2 Canonical Momenta

Define momenta via:
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Explicitly:

. Time:
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. Spatial:
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This is stochastic:

Since () ~ H(0,6?), this momentum evolves under a stochastic differential
equation, not a classical one. We’ll handle this semi-classically in the Hamiltonian.

2.3 Legendre Transform — Hamiltonian

We construct the Hamiltonian:
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Substitute each:
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We get the final Hamiltonian:
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This is the 7D Hamiltonian governing the dynamics of motion through the emergent
probabilistic geometry of 7dU.

2.4 Interpretation

. Classical sectors (x, y, z) behave normally.

. ¢ and w define curvature-rescaled motion—their momenta are modulated
by field magnitude.

. £ introduces stochastic deformation of phase space, potentially breaking

Liouville’s theorem unless handled via ensemble averaging.

. Time is treated as a coordinate—not a parameter—allowing later
Wheeler-DeWitt quantization.

Section 3: Recovery of Classical Limits & Symmetries

3.1 Classical General Relativity Recovery (£, w, £ — 0)

To recover General Relativity, we collapse the 7dU Hamiltonian by constraining the
non-spatial dimensions:

-0, -0, &nN—-0
This yields:

. D¢ Pys De — O (or vanish due to infinite mass term in

denominator)

. Motion becomes restricted to 4D spacetime (l‘ » X, Y, Z)



. The Hamiltonian reduces to:
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This is exactly the Hamiltonian for a free relativistic particle in flat Minkowski space:

1
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So: GR is recovered in the limit of collapsed dimensional constraints.
3.2 Quantum Mechanical Recovery via Commutation & Poisson Limits

We now examine Poisson brackets and check whether quantization is consistent.

Canonical structure:
i — Si
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This still holds for the 7D phase space:
q'=1{tx,y,2,0,0,¢}
When promoted to operators:
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This defines the canonical quantization of the extended geometry.

3.3 £ as Stochastic Deformation of Phase Space

In the limité(#) — o =~ const (small noise or frozen fluctuation):
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So the Hamiltonian becomes regular again. But when &£(¢) is dynamic:

. The Hamiltonian becomes time-dependent

. The system behaves like a driven oscillator or non-Hermitian quantum
system

. Liouville’s theorem may deform (phase-space volume is not conserved

under stochastic flow)

This gives rise to testable deviations from Schrddinger evolution, making it a falsifiable

quantum gravity candidate.

3.4 Summary of Symmetry Recovery

Sector 7dU Treatment Classical Limit Outcome
t,X,y,Z Canonical spacetime Minkowski metric
coordinates recovered
e Collapse constraint Sets minimal curvature
bound (= 0 = GR)
@ Emergence/scaling Upper divergence limit
constraint removed (— 0 = GR)
& Stochastic/probabilistic ~ Vanishes — classical
fluctuation determinism restored
Phase space Modified by &(t) Canonical brackets
preserved
We have now shown:
. The Hamiltonian reduces cleanly to classical GR in collapse
. Commutation relations and quantization still hold under controlled &

. Time-dependent & introduces falsifiable quantum behavior



Section 4: Quantization Pathways — Toward a 7dU Wheeler-
DeWitt Equation

4.1 Canonical Quantization in 7dU

We promote canonical variables to operators:
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Our Hamiltonian becomes a differential operator:
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4.2 The 7dU Wavefunctional: ¥(z, x, y,z,{, w, &)
We now postulate a wavefunction over probabilistic curvature space:
Y =0

This is the Wheeler-DeWitt-type constraint:

. No external time parameter
. Time appears only within the configuration space
. Fits naturally into a geometrodynamic view, not a Schrodinger one

This matches the spirit of:

in quantum gravity, where the wavefunction is defined over geometries, not particles.



4.3 £ as Time Parameter or Decoherence Driver?

This shows us:

E(t)—previously a stochastic dimension—now shows up in the kinetic operator as:
1 0°¥
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This suggests two interpretations:

Option A: & as Internal Time

. If £(t) evolves monotonically, we can use £ as a clock:

oY .
0_ ~ evolution

. This matches emergent time in decoherence or entropic dynamics models
(Rovelli, Page-Wootters).

Option B: £ as Entropy Flux

. £ contributes non-Hermitian flow:
time evolution becomes probabilistic

. The wavefunction may diffuse, not just propagate—suggesting entropy,
measurement, collapse, or irreversibility.

Either way:

Time is no longer external—it is emergent, either through & or via fluctuation-
constrained geometry.

4.4 Summary: 7dU Wheeler-DeWitt Proposal

We propose a quantum gravity framework where:

The 7D Hamiltonian becomes a differential constraint on wavefunction
over curvature space



. £ governs quantum uncertainty, time emergence, or entropy flow

. ¢ and w impose geometry-stabilizing boundaries—cutoffs for fluctuation
and divergence

. The resulting equation is:
HY =0
with

¥Y=Y{xy2/¢w0)
Section 5: Simulation Targets & Hamilton-Jacobi Structure

5.1 The Hamilton-Jacobi Equation in 7dU

We now express system evolution not as trajectories in time—but as motion across
action surfaces in configuration space.

The classical Hamilton-Jacobi equation is:
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. S(g', 2) is the action as a function of configuration variables and
affine parameter A.

. In7dU,6]l= {l‘,x,y,Z,Zj,a),é}
. Time is not special: we evolve over entropy-weighted geometry
Applying to Our Hamiltonian:

Recall:
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Substitute p; = 0_ we get:
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This is the Hamilton-Jacobi surface equation in 7dU.
5.2 Interpretation for Simulation

This form of the equation enables:

. Symbolic solutions to be found along specific dimensional slices (e.g.
freezing  or )

. Numerical evolution of action surfaces S, even if time is not globally
defined
. Emergence of causal order from local entropy flow

In practice, we can:

. Simulate action surfaces over (£, &) with boundary conditions to test
fluctuation thresholds

. Identify collapse-resilient pathways—i.e., trajectories that preserve
structure

. Use gradient flow of S to recover generalized trajectories:

oH oH




5.3 Simulation MVPs and Experimental Targets

Colab-ready MVPs could simulate:

. Fluctuation collapse thresholds: find critical £ where structure fails or
stabilizes

. Action field evolution across {-£ or w-£ space

. Comparative path entropy for multiple emergence routes

Experimental parallels could be drawn to:

. Modified Casimir vacuum behavior (sensitive to £&-{ scaling)
. Quantum tunneling asymmetries in curved backgrounds
. E-induced phase decoherence in interferometers

5.4 Final Notes

This structure prepares us to:

. Build symbolic and numerical simulators
. Seed entropy-aware AGI exploration in QEPE environments
. Quantitatively bridge collapse geometry to emergence logic

The 7dU becomes simulative—not just theoretical.
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