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Section 1: Constructing the Lagrangian from the 7dU Metric 

1.1 The 7D Metric Structure 

We begin with the 7D metric  where  and the signature is 
chosen as: 

 

This diagonal structure reflects the extended curvature space where: 

 •  enforces a minimal bound (collapse constraint) 

 •  enforces a maximal divergence (expansion constraint) 

 •  introduces structured stochasticity      
  (chance dimension) 

1.2 General Form of the Action 

We write the extended Einstein-Hilbert action for 7dU: 

 

However, for the Hamiltonian-Lagrangian formulation, we consider a particle or 
geodesic action in this curved 7D spacetime: 

 

gAB A, B = 0,1,2,3,4,5,6

gAB =

−c2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 ζ2 0 0
0 0 0 0 0 ω2 0
0 0 0 0 0 0 ξ2(t)

ζ

ω

ξ(t) ∼ 𝒩(0,σ2)

S =
1

2κ7 ∫ d7x −g(7) R(7) + Smatter

S = ∫ ℒ dλ = ∫
1
2

gAB
dxA

dλ
dxB

dλ
dλ



Let  and  be an affine parameter (e.g., proper time for massive 
particles). Then: 

 

where . 

This is the kinetic Lagrangian for a test particle in 7dU. 

1.3 Notes on ξ as a Stochastic Contribution 

We now distinguish ξ from deterministic coordinates: 

 • ξ is itself time-dependent, modeled as: 

 with  a Wiener process 

 • Thus  is not a classical term, but contains: 

 • Fluctuating time dependence 

 • Implicit stochastic calculus rules, e.g., Ito or Stratonovich 

We may write this term as a stochastic Lagrangian contribution: 

 

Alternatively, treat it via expectation value: 

 

This allows a semi-classical treatment where ξ is a time-varying stochastic field, but its 
contribution to curvature is ensemble-averaged. 

xA = (t, xi, ζ, ω, ξ) λ

ℒ =
1
2 [−c2·t2 + δij

·xi ·xj + ζ2 ·ζ2 + ω2 ·ω2 + ξ2(t) ·ξ2]
·x =

dx
dλ

ξ(t) = ξ0e−αt + W(t) W(t)

ξ2(t) ·ξ2

ℒξ =
1
2

ξ2(t) ·ξ2 with ξ(t) ∼ 𝒩(0,σ2)

⟨ℒξ⟩ =
1
2

⟨ξ2(t)⟩ ·ξ2 =
1
2

σ2 ·ξ2



1.4 Summary of the 7dU Lagrangian 

 

This will now serve as the foundation for: 

 • Deriving canonical momenta via  

 • Applying the Legendre transform to obtain  

 • Exploring how ξ’s stochasticity alters phase space dynamics 

Section 2: Canonical Momenta & Hamiltonian Construction 

2.1 Define Generalized Coordinates 

From the 7D Lagrangian: 

 

We identify generalized coordinates: 

 

and their velocities: 

 

2.2 Canonical Momenta 

Define momenta via: 

 

ℒ =
1
2 (−c2·t2 + · ⃗x2 + ζ2 ·ζ2 + ω2 ·ω2 + ξ2(t) ·ξ2)

pq =
∂ℒ
∂ ·q

ℋ

ℒ =
1
2 (−c2·t2 + ·x2 + ·y2 + ·z2 + ζ2 ·ζ2 + ω2 ·ω2 + ξ2(t) ·ξ2)

qi = {t, x, y, z, ζ, ω, ξ}

·qi = {·t, ·x, ·y, ·z, ·ζ, ·ω, ·ξ}

pi =
∂ℒ
∂ ·qi



Explicitly: 

 • Time: 

 

 • Spatial: 

 

 • Emergence (ω): 

 

 • Collapse (ζ): 

 

 • Chance (ξ): 

 

!!! - Note on : 

This is stochastic: 

Since , this momentum evolves under a stochastic differential 
equation, not a classical one. We’ll handle this semi-classically in the Hamiltonian. 

2.3 Legendre Transform → Hamiltonian 

We construct the Hamiltonian: 

 

pt =
∂ℒ
∂ ·t

= − c2·t

px = ·x, py = ·y, pz = ·z

pω = ω2 ·ω

pζ = ζ2 ·ζ

pξ = ξ2(t) ·ξ

pξ

ξ(t) ∼ 𝒩(0,σ2)

ℋ = ∑
i

·qi pi − ℒ



Substitute each: 

 •  

 •  

 •  

 •  

 •  

So: 

 

Simplify: 

 

But since: 

 

·t = −
pt

c2

·x = px, etc .

·ω =
pω

ω2

·ζ =
pζ

ζ2

·ξ =
pξ

ξ2(t)

ℋ = pt (−
pt

c2 ) + p2
x + p2

y + p2
z +

p2
ζ

ζ2
+

p2
ω

ω2
+

p2
ξ

ξ2(t)
− ℒ

ℋ = −
p2

t

c2
+ p2

x + p2
y + p2

z +
p2

ζ

ζ2
+

p2
ω

ω2
+

p2
ξ

ξ2(t)
− ℒ

ℒ =
1
2 (−c2·t2 + ·x2 + ⋯) =

1
2 (−

p2
t

c2
+ p2

x + ⋯)



We get the final Hamiltonian: 

 

This is the 7D Hamiltonian governing the dynamics of motion through the emergent 
probabilistic geometry of 7dU. 

2.4 Interpretation 

 • Classical sectors (x, y, z) behave normally. 

 • ζ and ω define curvature-rescaled motion—their momenta are modulated  
  by field magnitude. 

 • ξ introduces stochastic deformation of phase space, potentially breaking  
  Liouville’s theorem unless handled via ensemble averaging. 

 • Time is treated as a coordinate—not a parameter—allowing later    
  Wheeler–DeWitt quantization. 

Section 3: Recovery of Classical Limits & Symmetries 

3.1 Classical General Relativity Recovery (ζ, ω, ξ → 0) 

To recover General Relativity, we collapse the 7dU Hamiltonian by constraining the 
non-spatial dimensions: 

 

This yields: 

 •  (or vanish due to infinite mass term in     

  denominator) 

 • Motion becomes restricted to 4D spacetime  

  

ℋ =
1
2 (−

p2
t

c2
+ p2

x + p2
y + p2

z +
p2

ζ

ζ2
+

p2
ω

ω2
+

p2
ξ

ξ2(t) )

ζ → 0, ω → 0, ξ(t) → 0

pζ, pω, pξ → 0

(t, x, y, z)



 • The Hamiltonian reduces to: 

 

This is exactly the Hamiltonian for a free relativistic particle in flat Minkowski space: 

 

So: GR is recovered in the limit of collapsed dimensional constraints. 

3.2 Quantum Mechanical Recovery via Commutation & Poisson Limits 

We now examine Poisson brackets and check whether quantization is consistent. 

Canonical structure: 

 

This still holds for the 7D phase space: 

 

When promoted to operators: 

 

This defines the canonical quantization of the extended geometry. 

3.3 ξ as Stochastic Deformation of Phase Space 

In the limit  (small noise or frozen fluctuation): 

ℋGR =
1
2 (−

p2
t

c2
+ p2

x + p2
y + p2

z )

ℋ =
1
2

ημν pμpν with ημν = diag(−1/c2,1,1,1)

{qi, pj} = δi
j

qi = {t, x, y, z, ζ, ω, ξ}

[ ̂qi, ̂pj] = iℏδi
j

ξ(t) → σ ≈ const



 

So the Hamiltonian becomes regular again. But when  is dynamic: 

 • The Hamiltonian becomes time-dependent 

 • The system behaves like a driven oscillator or non-Hermitian quantum   
  system 

 • Liouville’s theorem may deform (phase-space volume is not conserved   
  under stochastic flow) 

This gives rise to testable deviations from Schrödinger evolution, making it a falsifiable 
quantum gravity candidate. 

3.4 Summary of Symmetry Recovery 

We have now shown: 

 • The Hamiltonian reduces cleanly to classical GR in collapse 

 • Commutation relations and quantization still hold under controlled ξ 

 • Time-dependent ξ introduces falsifiable quantum behavior 

p2
ξ

ξ2(t)
→

p2
ξ

σ2

ξ(t)

Sector 7dU Treatment Classical Limit Outcome 

t, x, y, z Canonical spacetime 
coordinates

Minkowski metric 
recovered

Collapse constraint Sets minimal curvature 
bound (→ 0 = GR)

Emergence/scaling 
constraint

Upper divergence limit 
removed (→ 0 = GR)

Stochastic/probabilistic 
fluctuation

Vanishes → classical 
determinism restored

Phase space Modified by ξ(t) Canonical brackets 
preserved

ζ

ξ

ω



Section 4: Quantization Pathways — Toward a 7dU Wheeler–
DeWitt Equation 

4.1 Canonical Quantization in 7dU 

We promote canonical variables to operators: 

 

Our Hamiltonian becomes a differential operator: 

 

4.2 The 7dU Wavefunctional:  

We now postulate a wavefunction over probabilistic curvature space: 

 

This is the Wheeler–DeWitt-type constraint: 

 • No external time parameter 

 • Time appears only within the configuration space 

 • Fits naturally into a geometrodynamic view, not a Schrödinger one 

This matches the spirit of: 

 

in quantum gravity, where the wavefunction is defined over geometries, not particles. 

qi → ̂qi, pi → ̂pi = − iℏ
∂

∂qi

ℋ̂ = −
ℏ2

2 (−
1
c2

∂2

∂t2
+ ∇2 +

1
ζ2

∂2

∂ζ2
+

1
ω2

∂2

∂ω2
+

1
ξ2(t)

∂2

∂ξ2 )
Ψ(t, x, y, z, ζ, ω, ξ)

ℋ̂Ψ = 0

Ĥ Ψ[gij] = 0



4.3 ξ as Time Parameter or Decoherence Driver? 

This shows us: 

—previously a stochastic dimension—now shows up in the kinetic operator as: 

 

This suggests two interpretations: 

Option A: ξ as Internal Time 

 • If  evolves monotonically, we can use ξ as a clock: 

 

 • This matches emergent time in decoherence or entropic dynamics models  
  (Rovelli, Page-Wootters). 

Option B: ξ as Entropy Flux 

 • ξ contributes non-Hermitian flow: 
  time evolution becomes probabilistic 

 • The wavefunction may diffuse, not just propagate—suggesting entropy,   
  measurement, collapse, or irreversibility. 

Either way: 

Time is no longer external—it is emergent, either through ξ or via fluctuation-
constrained geometry. 

4.4 Summary: 7dU Wheeler–DeWitt Proposal 

We propose a quantum gravity framework where: 

 • The 7D Hamiltonian becomes a differential constraint on wavefunction   
  over curvature space 

ξ(t)

1
ξ2(t)

∂2Ψ
∂ξ2

ξ(t)

∂Ψ
∂ξ

∼ evolution



 • ξ governs quantum uncertainty, time emergence, or entropy flow 

 • ζ and ω impose geometry-stabilizing boundaries—cutoffs for fluctuation  
  and divergence 

 • The resulting equation is: 

  

with 

  

Section 5: Simulation Targets & Hamilton–Jacobi Structure 

5.1 The Hamilton–Jacobi Equation in 7dU 

We now express system evolution not as trajectories in time—but as motion across 
action surfaces in configuration space. 

The classical Hamilton–Jacobi equation is: 

 

 •  is the action as a function of configuration variables and   
  affine parameter λ. 

 • In 7dU,  

 • Time is not special: we evolve over entropy-weighted geometry 

Applying to Our Hamiltonian: 

Recall: 

 

ℋ̂Ψ = 0

Ψ = Ψ(t, x, y, z, ζ, ω, ξ)

∂S
∂λ

+ ℋ (qi,
∂S
∂qi ) = 0

S(qi, λ)

qi = {t, x, y, z, ζ, ω, ξ}

ℋ =
1
2 (−

p2
t

c2
+ p2

x + p2
y + p2

z +
p2

ζ

ζ2
+

p2
ω

ω2
+

p2
ξ

ξ2(t) )



Substitute , we get: 

 

This is the Hamilton–Jacobi surface equation in 7dU. 

5.2 Interpretation for Simulation 

This form of the equation enables: 

 • Symbolic solutions to be found along specific dimensional slices (e.g.   
  freezing  or ) 

 • Numerical evolution of action surfaces S, even if time is not globally   
  defined 

 • Emergence of causal order from local entropy flow 

In practice, we can: 

 • Simulate action surfaces over ( , ) with boundary conditions to test   
  fluctuation thresholds 

 • Identify collapse-resilient pathways—i.e., trajectories that preserve   
  structure 

 • Use gradient flow of S to recover generalized trajectories: 

 

pi =
∂S
∂qi

∂S
∂λ

+
1
2 (−

1
c2 ( ∂S

∂t )
2

+ ( ∂S
∂x )

2

+ ( ∂S
∂y )

2

+ ( ∂S
∂z )

2

+
1
ζ2 ( ∂S

∂ζ )
2

+
1

ω2 ( ∂S
∂ω )

2

+
1

ξ2(t) ( ∂S
∂ξ )

2

) = 0

ω ζ

ζ ξ

·qi =
∂ℋ
∂pi

=
∂ℋ

∂ ( ∂S
∂qi )



5.3 Simulation MVPs and Experimental Targets 

Colab-ready MVPs could simulate: 

 • Fluctuation collapse thresholds: find critical ξ where structure fails or   
  stabilizes 

 • Action field evolution across ζ–ξ or ω–ξ space 

 • Comparative path entropy for multiple emergence routes 

Experimental parallels could be drawn to: 

 • Modified Casimir vacuum behavior (sensitive to ξ–ζ scaling) 

 • Quantum tunneling asymmetries in curved backgrounds 

 • ξ-induced phase decoherence in interferometers 

5.4 Final Notes 

This structure prepares us to: 

 • Build symbolic and numerical simulators 

 • Seed entropy-aware AGI exploration in QEPE environments 

 • Quantitatively bridge collapse geometry to emergence logic 

The 7dU becomes simulative—not just theoretical. 
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