5.4 Mathematical Derivation in the 7dU Framework

The 7-dimensional metric tensor $g_{\mu\nu}$, which includes contributions from the chance dimension, influences the conjugate operators \hat{x} and \hat{p} . In the 7dU framework, the metric tensor is:[5]

 $g_{\mu\nu} =$

g_{00}	0	0	0	0	0	0	
0	<i>g</i> ₁₁	0	0	0	0	0	
0	0	g_{22}	0	0	0	0	
0	0	0	<i>8</i> 33	0	0	0	
0	0	0	0	g_{44}	0	0	
0	0	0	0	0	<i>8</i> 55	0	
0	0	0	0	0	0	ξ^2	

where the ξ^2 term introduces a fluctuating geometry in the chance dimension. This fluctuation modifies the conjugate operators as follows:

$$\hat{x} \to \hat{x} + \xi \, \hat{\xi}_x, \quad \hat{p} \to \hat{p} + \xi \, \hat{\xi}_p,$$

where $\hat{\xi}_x$ and $\hat{\xi}_p$ are operators associated with the chance dimension

Substituting these modified operators into the standard commutator relation yields:

$$[\hat{x},\hat{p}] = i\hbar + \xi \left([\hat{\xi}_x,\hat{\xi}_p] \right),$$

where $[\hat{\xi}_x, \hat{\xi}_p]$ encapsulates the influence of chance on the system's uncertainty. This term contributes directly to $g(\xi)$ in the generalized uncertainty relation.